Research Article

Improved Arabic Alphabet Characters Classification Using Convolutional Neural Networks (CNN)

Table 2

Summary of Arabic handwritten characters recognition using CNN model.

ReferencesYearDatasetType (size)MethodOptimizationAccuracy (%)Loss (%)

El-Sawy et al. [6]2017AHCDChars (16,800)CNN(i) Minibatch94.935.1

Mudhsh et al. [22]2017ADBaseDigits (6.600)CNN (based on VGG net)(ii) Dropout99.6
HACDBChars (70.000)(iii) Data augmentation97.32

Boufenar et al. [23]2017OIHACDBChars (6.600)CNN (based on Alexnet)(i) Dropout100
AHCD(ii) Minibatch99.98

Younis [19]2018AHCDChars (8.737)CNN97.7
AIA9K94.8

Latif et al. [20]2018Mix of handwriting of multiple languagesCharsCNN99.260.02

Altwaijry and Turaiki [13]2020HijjaChars (47,434)CNN88
AHCD97

Alrobah &Albahl [21]2021HijjaChars (47,434)CNN + SVM96.3

Mustapha et al. [24]2021AHCDCDCGAN