Research Article
Improved Arabic Alphabet Characters Classification Using Convolutional Neural Networks (CNN)
Table 2
Summary of Arabic handwritten characters recognition using CNN model.
| | References | Year | Dataset | Type (size) | Method | Optimization | Accuracy (%) | Loss (%) |
| | El-Sawy et al. [6] | 2017 | AHCD | Chars (16,800) | CNN | (i) Minibatch | 94.93 | 5.1 |
| | Mudhsh et al. [22] | 2017 | ADBase | Digits (6.600) | CNN (based on VGG net) | (ii) Dropout | 99.6 | — | | HACDB | Chars (70.000) | (iii) Data augmentation | 97.32 | — |
| | Boufenar et al. [23] | 2017 | OIHACDB | Chars (6.600) | CNN (based on Alexnet) | (i) Dropout | 100 | — | | AHCD | (ii) Minibatch | 99.98 |
| | Younis [19] | 2018 | AHCD | Chars (8.737) | CNN | — | 97.7 | — | | AIA9K | 94.8 | — |
| | Latif et al. [20] | 2018 | Mix of handwriting of multiple languages | Chars | CNN | — | 99.26 | 0.02 |
| | Altwaijry and Turaiki [13] | 2020 | Hijja | Chars (47,434) | CNN | — | 88 | — | | AHCD | 97 | — |
| | Alrobah &Albahl [21] | 2021 | Hijja | Chars (47,434) | CNN + SVM | — | 96.3 | — |
| | Mustapha et al. [24] | 2021 | AHCD | | CDCGAN | — | — | — |
|
|