Research Article

Improved Arabic Alphabet Characters Classification Using Convolutional Neural Networks (CNN)

Table 7

Experimental results on mixing of Hijja and AHCD through different data augmentation techniques.

Mixed datasetData augmentation techniques with using Nadam algorithm
RotationShiftingRotation and shiftingFlippingGaussian noise
TrainingTestingTraining accuracyTesting accuracyTraining accuracyTesting accuracyTraining accuracyTesting accuracyTraining accuracyTesting accuracyTraining accuracyTesting accuracy

80(%): AHCD
20(%): Hijja
20(%): AHCD
10(%): Hijja
99.6297.4299.3698.0299.3898.3299.7797.0899.1596.74
80(%): Hijja
20(%): AHCD
20(%): Hijja
10(%): AHCD
97.3688.4793.6689.0794.9190.5495.2188.2196.6888.49
80(%): AHCD
80(%): Hijja
20(%): AHCD
20(%): Hijja
97.2774.5397.1675.1398.1378.1398.1674.2296.9874.02