Research Article
Improved Arabic Alphabet Characters Classification Using Convolutional Neural Networks (CNN)
Table 7
Experimental results on mixing of Hijja and AHCD through different data augmentation techniques.
| | Mixed dataset | Data augmentation techniques with using Nadam algorithm | | Rotation | Shifting | Rotation and shifting | Flipping | Gaussian noise | | Training | Testing | Training accuracy | Testing accuracy | Training accuracy | Testing accuracy | Training accuracy | Testing accuracy | Training accuracy | Testing accuracy | Training accuracy | Testing accuracy |
| 80(%): AHCD 20(%): Hijja | 20(%): AHCD 10(%): Hijja | 99.62 | 97.42 | 99.36 | 98.02 | 99.38 | 98.32 | 99.77 | 97.08 | 99.15 | 96.74 | 80(%): Hijja 20(%): AHCD | 20(%): Hijja 10(%): AHCD | 97.36 | 88.47 | 93.66 | 89.07 | 94.91 | 90.54 | 95.21 | 88.21 | 96.68 | 88.49 | 80(%): AHCD 80(%): Hijja | 20(%): AHCD 20(%): Hijja | 97.27 | 74.53 | 97.16 | 75.13 | 98.13 | 78.13 | 98.16 | 74.22 | 96.98 | 74.02 |
|
|