Research Article
A Soft Label Method for Medical Image Segmentation with Multirater Annotations
Table 2
Quantitative results with different strategies on the MNIST and RIGA test set.
| Methods | MNIST | RIGA | | | | | | |
| Hard | Mode-UNet | 62.89 | 57.30 | 96.90 | 82.41 | 94.62 | 75.09 | MV-UNet | 89.14 | 80.59 | 97.03 | 84.92 | 94.35 | 73.47 | STAPLE-UNet | 82.26 | 74.51 | 96.28 | 85.37 | 92.84 | 75.68 |
| Soft | Average-UNet | 90.54 | 82.85 | 97.04 | 85.40 | 94.52 | 76.58 | GLS-UNet | 87.32 | 78.29 | 96.14 | 86.83 | 93.71 | 75.95 | -UNet | 90.50 | 81.03 | 96.85 | 84.71 | 94.33 | 77.18 | -UNet | 87.67 | 80.13 | 96.77 | 86.13 | 93.82 | 77.90 | Mixup-UNet | 86.61 | 78.58 | 96.83 | 84.72 | 94.02 | 75.18 | SVLS-UNet | 90.32 | 82.05 | 97.40 | 86.09 | 94.95 | 76.87 |
| SOTA | LNL | 84.52 | 76.33 | 97.67 | 87.56 | 95.46 | 78.76 | MRNet | 93.63 | 88.09 | 97.60 | 86.54 | 95.78 | 78.19 |
| ā | Ours | 94.76 | 90.82 | 97.98 | 89.85 | 96.04 | 81.97 |
|
|
The best results are highlighted, and the second best results are italic.
|