Research Article

A Soft Label Method for Medical Image Segmentation with Multirater Annotations

Table 2

Quantitative results with different strategies on the MNIST and RIGA test set.

MethodsMNISTRIGA

HardMode-UNet62.8957.3096.9082.4194.6275.09
MV-UNet89.1480.5997.0384.9294.3573.47
STAPLE-UNet82.2674.5196.2885.3792.8475.68

SoftAverage-UNet90.5482.8597.0485.4094.5276.58
GLS-UNet87.3278.2996.1486.8393.7175.95
-UNet90.5081.0396.8584.7194.3377.18
-UNet87.6780.1396.7786.1393.8277.90
Mixup-UNet86.6178.5896.8384.7294.0275.18
SVLS-UNet90.3282.0597.4086.0994.9576.87

SOTALNL84.5276.3397.6787.5695.4678.76
MRNet93.6388.0997.6086.5495.7878.19

 Ours94.7690.8297.9889.8596.0481.97

The best results are highlighted, and the second best results are italic.