Research Article
A Small Object Detection Algorithm Based on Modulated Deformable Convolution and Large Kernel Convolution
Table 3
Comparisons of the speed and accuracy of different object detectors.
| Methods | mAP0.5 (%) | mAP0.95 (%) | Parameters (M) | GFLOPs |
| YOLOX | 83.6 | 54.2 | 8.94 | 26.64 | YOLOv3 [3] | 70.8 | 33.6 | 61.54 | 65.54 | YOLOv4 [1] | 75.2 | 38.4 | 64.36 | 60.33 | EfficientDet-d0 [18] | 54.4 | 22.7 | 3.83 | 4.61 | RetinaNet [7] | 85.1 | 47.8 | 36.39 | 146.00 | Faster R-CNN [24] | 67.5 | 34.0 | 28.31 | 939.45 | CenterNet [26] | 87.9 | 51.6 | 32.67 | 109.34 | SSD [19] | 65.0 | 30.2 | 24.01 | 61.11 | BGD-YOLOX (ours) | 88.3 | 56.7 | 21.55 | 63.93 |
|
|