Research Article
Biomedical Text Classification Using Augmented Word Representation Based on Distributional and Relational Contexts
Table 10
CNN classification performance using embeddings over the BioText Berkeley dataset.
| Embeddings | Accuracy | , | , | , | , | Training | Validation | Training | Validation | Training | Validation | Training | Validation |
| GloVe_C | 0.8887 | 0.8592 | 0.9177 | 0.8211 | 0.8907 | 0.8592 | 0.9073 | 0.8651 | GloVe_W | 0.8858 | 0.8563 | 0.9047 | 0.8123 | 0.8864 | 0.8334 | 0.9021 | 0.8270 | GloVe_Merged | 0.8487 | 0.8475 | 0.8584 | 0.8006 | 0.8493 | 0.8358 | 0.8643 | 0.8211 | CE | 0.8873 | 0.8646 | 0.9255 | 0.8323 | 0.8788 | 0.8328 | 0.9191 | 0.8894 | WE | 0.8749 | 0.8652 | 0.9201 | 0.8423 | 0.8688 | 0.8428 | 0.9285 | 0.8318 | Merged | 0.8507 | 0.8440 | 0.9155 | 0.8294 | 0.8516 | 0.8152 | 0.8862 | 0.8465 |
|
|
Bold means the best performance in the case of each dataset.
|