Research Article
Biomedical Text Classification Using Augmented Word Representation Based on Distributional and Relational Contexts
Table 11
LSTM classification performance using embeddings over the BioText Berkeley dataset.
| Embeddings | Accuracy | , | , | , | , | Training | Validation | Training | Validation | Training | Validation | Training | Validation |
| GloVe_C | 0.8518 | 0.8563 | 0.8474 | 0.8035 | 0.8698 | 0.8822 | 0.8663 | 0.8410 | GloVe_W | 0.8581 | 0.8492 | 0.8396 | 0.7977 | 0.8682 | 0.8651 | 0.8582 | 0.8006 | GloVe_Merged | 0.8230 | 0.8246 | 0.8461 | 0.7801 | 0.8376 | 0.8182 | 0.8412 | 0.8208 | CE | 0.8880 | 0.8628 | 0.8513 | 0.8271 | 0.8737 | 0.8765 | 0.8787 | 0.8430 | WE | 0.8758 | 0.8552 | 0.8474 | 0.8183 | 0.8837 | 0.8306 | 0.8628 | 0.8377 | Merged | 0.8321 | 0.8283 | 0.8486 | 0.8039 | 0.8482 | 0.8294 | 0.8436 | 0.8259 |
|
|
Bold means the best performance in the case of each dataset.
|