Research Article
Biomedical Text Classification Using Augmented Word Representation Based on Distributional and Relational Contexts
Table 12
BiLSTM classification performance using embeddings over the BioText Berkeley dataset.
| Embeddings | Accuracy | , | , | , | , | Training | Validation | Training | Validation | Training | Validation | Training | Validation |
| GloVe_C | 0.8463 | 0.8392 | 0.8310 | 0.7859 | 0.8633 | 0.8551 | 0.8689 | 0.8568 | GloVe_W | 0.8313 | 0.8122 | 0.8441 | 0.7977 | 0.8653 | 0.8534 | 0.8729 | 0.8152 | GloVe_Merged | 0.8266 | 0.8187 | 0.8171 | 0.7859 | 0.8389 | 0.8240 | 0.8386 | 0.8205 | CE | 0.8438 | 0.8337 | 0.8576 | 0.8018 | 0.8753 | 0.8425 | 0.8766 | 0.8501 | WE | 0.8431 | 0.8335 | 0.8657 | 0.8089 | 0.8616 | 0.8606 | 0.8816 | 0.8459 | Merged | 0.8505 | 0.8240 | 0.8318 | 0.7969 | 0.8446 | 0.8394 | 0.8468 | 0.8313 |
|
|
Bold means the best performance in the case of each dataset.
|