Research Article
Biomedical Text Classification Using Augmented Word Representation Based on Distributional and Relational Contexts
Table 13
CNN-LSTM classification performance using embeddings over the BioText Berkeley dataset.
| Embeddings | Accuracy | , | , | , | , | Training | Validation | Training | Validation | Training | Validation | Training | Validation |
| GloVe_C | 0.9177 | 0.8798 | 0.9099 | 0.8328 | 0.9134 | 0.8768 | 0.9167 | 0.8739 | GloVe_W | 0.9034 | 0.8856 | 0.8783 | 0.8123 | 0.9021 | 0.8768 | 0.9203 | 0.8358 | GloVe_Merged | 0.8897 | 0.8534 | 0.8620 | 0.8035 | 0.8676 | 0.8358 | 0.9014 | 0.8358 | CE | 0.9202 | 0.8658 | 0.8997 | 0.8501 | 0.8866 | 0.8587 | 0.9192 | 0.8875 | WE | 0.9094 | 0.8218 | 0.9240 | 0.8387 | 0.9173 | 0.8482 | 0.9265 | 0.8718 | Merged | 0.8984 | 0.8599 | 0.8806 | 0.8603 | 0.8728 | 0.8223 | 0.9175 | 0.8418 |
|
|
Bold means the best performance in the case of each dataset.
|