Research Article
Biomedical Text Classification Using Augmented Word Representation Based on Distributional and Relational Contexts
Table 15
LSTM classification performance using embeddings over the PubMed_20k_RCT dataset.
| Embeddings | Accuracy | , | , | , | , | Training | Validation | Training | Validation | Training | Validation | Training | Validation |
| GloVe_C | 0.7605 | 0.7589 | 0.7826 | 0.7522 | 0.7601 | 0.7583 | 0.7724 | 0.7719 | GloVe_W | 0.7589 | 0.7566 | 0.7708 | 0.7680 | 0.7612 | 0.7559 | 0.7726 | 0.7540 | GloVe_Merged | 0.7309 | 0.7295 | 0.7407 | 0.7378 | 0.7324 | 0.7201 | 0.7433 | 0.7405 | CE | 0.7667 | 0.7606 | 0.7785 | 0.7554 | 0.7687 | 0.7596 | 0.7856 | 0.7754 | WE | 0.7571 | 0.7559 | 0.7819 | 0.7731 | 0.7707 | 0.7587 | 0.7849 | 0.7699 | Merged | 0.7386 | 0.7297 | 0.7771 | 0.7497 | 0.7431 | 0.7397 | 0.7592 | 0.7486 |
|
|
Bold means the best performance in the case of each dataset.
|