Research Article
Biomedical Text Classification Using Augmented Word Representation Based on Distributional and Relational Contexts
Table 16
BiLSTM classification performance using embeddings over the PubMed_20k_RCT dataset.
| Embeddings | Accuracy | , | , | , | , | Training | Validation | Training | Validation | Training | Validation | Training | Validation |
| GloVe_C | 0.7588 | 0.7478 | 0.7705 | 0.7650 | 0.7593 | 0.7573 | 0.7706 | 0.7631 | GloVe_W | 0.7569 | 0.7464 | 0.7707 | 0.7699 | 0.7601 | 0.7470 | 0.7719 | 0.7680 | GloVe_Merged | 0.7306 | 0.7279 | 0.7411 | 0.7381 | 0.7328 | 0.7283 | 0.7414 | 0.7410 | CE | 0.7545 | 0.7362 | 0.7850 | 0.7667 | 0.7598 | 0.7561 | 0.7909 | 0.7687 | WE | 0.7576 | 0.7481 | 0.7898 | 0.7685 | 0.7667 | 0.7486 | 0.7941 | 0.7727 | Merged | 0.7326 | 0.7285 | 0.7501 | 0.7449 | 0.7396 | 0.7315 | 0.7786 | 0.7532 |
|
|
Bold means the best performance in the case of each dataset.
|