Research Article
Biomedical Text Classification Using Augmented Word Representation Based on Distributional and Relational Contexts
Table 17
CNN-LSTM classification performance using embeddings over the PubMed_20k_RCT dataset.
| Embeddings | Accuracy | , | , | , | , | Training | Validation | Training | Validation | Training | Validation | Training | Validation |
| GloVe_C | 0.7275 | 0.7217 | 0.7564 | 0.7497 | 0.7246 | 0.7156 | 0.7509 | 0.7340 | GloVe_W | 0.7233 | 0.7126 | 0.7220 | 0.7278 | 0.7275 | 0.7175 | 0.7473 | 0.7379 | GloVe_Merged | 0.7107 | 0.7010 | 0.7121 | 0.7207 | 0.7190 | 0.7049 | 0.7327 | 0.7231 | CE | 0.7337 | 0.7186 | 0.7515 | 0.7440 | 0.7390 | 0.7195 | 0.7908 | 0.7553 | WE | 0.7303 | 0.7184 | 0.7532 | 0.7505 | 0.7418 | 0.7293 | 0.7960 | 0.7756 | Merged | 0.7273 | 0.7094 | 0.7507 | 0.7491 | 0.7347 | 0.7109 | 0.7785 | 0.7531 |
|
|
Bold means the best performance in the case of each dataset.
|