Research Article
Biomedical Text Classification Using Augmented Word Representation Based on Distributional and Relational Contexts
Table 6
Concept categorization performance with
and
.
| Word embeddings | AP | BLESS | Battig | ESSLI_1a | ESSLI_2b | ESSLI_2c | Ohta-10-bio-words |
| GloVe_W | 0.21642 | 0.215 | 0.10896 | 0.43182 | 0.5 | 0.37778 | 0.41379 | GloVe_C | 0.22139 | 0.215 | 0.11374 | 0.43182 | 0.55 | 0.35555 | 0.40517 | GloVe_Merged | 0.25373 | 0.255 | 0.12043 | 0.43181 | 0.5 | 0.37778 | 0.43965 | WE | 0.22637 | 0.29 | 0.11891 | 0.47727 | 0.5 | 0.35556 | 0.38793 | CE | 0.23134 | 0.285 | 0.11795 | 0.45455 | 0.525 | 0.33333 | 0.41379 | Merged | 0.26617 | 0.275 | 0.12120 | 0.5 | 0.55 | 0.4 | 0.42242 |
|
|
Bold means the best performance in the case of each dataset.
|