Research Article
Biomedical Text Classification Using Augmented Word Representation Based on Distributional and Relational Contexts
Table 7
Concept categorization performance with
and
.
| Word embeddings | AP | BLESS | Battig | ESSLI_1a | ESSLI_2b | ESSLI_2c | Ohta-10-bio-words |
| GloVe_W | 0.22636 | 0.22 | 0.11393 | 0.43182 | 0.525 | 0.4 | 0.48275 | GloVe_C | 0.22388 | 0.23 | 0.11049 | 0.40909 | 0.5 | 0.35556 | 0.45689 | GloVe_Merged | 0.23880 | 0.25 | 0.11948 | 0.47727 | 0.525 | 0.4 | 0.44827 | WE | 0.26119 | 0.33 | 0.12388 | 0.65909 | 0.525 | 0.35556 | 0.49138 | CE | 0.25373 | 0.295 | 0.12235 | 0.56818 | 0.6 | 0.37778 | 0.48276 | Merged | 0.26119 | 0.305 | 0.12483 | 0.5 | 0.525 | 0.4 | 0.49138 |
|
|
Bold means the best performance in the case of each dataset.
|