Research Article
Biomedical Text Classification Using Augmented Word Representation Based on Distributional and Relational Contexts
Table 9
Concept categorization performance with
and
.
| Word embeddings | AP | BLESS | Battig | ESSLI_1a | ESSLI_2b | ESSLI_2c | Ohta-10-bio-words |
| GloVe_W | 0.22388 | 0.235 | 0.11871 | 0.43182 | 0.525 | 0.42222 | 0.5 | GloVe_C | 0.22139 | 0.235 | 0.11527 | 0.43182 | 0.525 | 0.37778 | 0.49137 | GloVe_Merged | 0.23383 | 0.275 | 0.12349 | 0.52272 | 0.55 | 0.44444 | 0.49137 | WE | 0.26368 | 0.285 | 0.12005 | 0.52273 | 0.525 | 0.37778 | 0.47414 | CE | 0.26866 | 0.31 | 0.12388 | 0.5 | 0.5 | 0.4 | 0.5 | Merged | 0.25871 | 0.315 | 0.12330 | 0.65909 | 0.525 | 0.37778 | 0.42241 |
|
|
Bold means the best performance in the case of each dataset.
|