Research Article
Hyper-Mol: Molecular Representation Learning via Fingerprint-Based Hypergraph
Table 2
The test ROC-AUC performance of different models in binary classification benchmarks.
| Datasets | HIV | BBBP | BACE | Avg. |
| GCN | 0.740 ± 0.030 | 0.718 ± 0.009 | 0.716 ± 0.020 | 0.725 | GIN | 0.753 ± 0.019 | 0.658 ± 0.045 | 0.701 ± 0.054 | 0.704 | N-Gram | 0.830 ± 0.013 | 0.912 ± 0.030 | 0.876 ± 0.035 | 0.873 | Hu et al. | 0.802 ± 0.009 | 0.708 ± 0.015 | 0.859 ± 0.008 | 0.790 | SchNet | 0.702 ± 0.034 | 0.848 ± 0.022 | 0.766 ± 0.011 | 0.772 | MGCN | 0.738 ± 0.016 | 0.850 ± 0.064 | 0.734 ± 0.030 | 0.774 |
| Hyper-Mol (GCN) | 0.814 ± 0.011 | 0.922 ± 0.012 | 0.898 ± 0.009 | 0.878 | Hyper-Mol (GIN) | 0.808 ± 0.016 | 0.910 ± 0.022 | 0.885 ± 0.024 | 0.868 |
|
|
The numbers in bold represent the best performance.
|