Research Article
Hyper-Mol: Molecular Representation Learning via Fingerprint-Based Hypergraph
Table 3
The test ROC-AUC performance of different models in multilabel classification benchmarks.
| Datasets | Tox21 | SIDER | ClinTox | Avg. |
| GCN | 0.709 ± 0.026 | 0.536 ± 0.032 | 0.625 ± 0.028 | 0.623 | GIN | 0.740 ± 0.008 | 0.573 ± 0.016 | 0.580 ± 0.044 | 0.631 | N-Gram | 0.769 ± 0.027 | 0.632 ± 0.005 | 0.855 ± 0.037 | 0.752 | Hu et al. | 0.787 ± 0.004 | 0.652 ± 0.009 | 0.789 ± 0.024 | 0.743 | SchNet | 0.772 ± 0.023 | 0.539 ± 0.037 | 0.715 ± 0.037 | 0.675 | MGCN | 0.707 ± 0.016 | 0.552 ± 0.018 | 0.634 ± 0.042 | 0.631 |
| Hyper-Mol (GCN) | 0.742 ± 0.038 | 0.659 ± 0.021 | 0.875 ± 0.078 | 0.759 | Hyper-Mol (GIN) | 0.723 ± 0.042 | 0.657 ± 0.026 | 0.879 ± 0.056 | 0.753 |
|
|
The numbers in bold represent the best performance.
|