Research Article

Lung Cancer Classification in Histopathology Images Using Multiresolution Efficient Nets

Table 4

Comparison with state-of-the-artwork.

ArchitecturesParametersInput sizeClassificationAccuracy result (%)

EfficientNetB4 [29]17 millionNot specifiedBinary and multiclass for COVID-19 diagnosis96
DCNN [3]60 million256 × 256Three classes of lung cancer subtypes71.1
Residual neural network [8]0.27 million50 × 50Lung cancer type from CT scan images85.71
Inception-v3 [13]23 million512 × 512Gastric and colonic from histopathological96
SC-CNN [30]Not specified27 × 27Nuclei in colon cancer histology images68
EfficientNetB2 (our approach)9.2 million260 × 260For histopathology images of lung and colon cancer (five classes)97.24