Research Article
The Solution of Absolute Value Equations Using Two New Generalized Gauss-Seidel Iteration Methods
Table 3
Numerical results for Example
6 with
and
.
| Methods | | 100 | 400 | 900 | 1600 | 4900 |
| AOR | Itr | 97 | 190 | 336 | 706 | 384 | Time | 0.4721 | 2.8203 | 3.2174 | 6.3887 | 9.2344 | RSV | 9.80-07 | 9.61-07 | 9.73-07 | 9.84-07 | 9.36-07 | MTS | Itr | 88 | 157 | 250 | 386 | 342 | Time | 0.4041 | 1.7953 | 3.0219 | 5.7626 | 8.8965 | RSV | 8.91-07 | 9.65-07 | 9.18-07 | 9.56-07 | 9.89-07 | NGGS method I | Itr | 39 | 59 | 76 | 92 | 112 | Time | 0.2309 | 0.4250 | 1.9633 | 2.5413 | 3.4387 | RSV | 8.39-07 | 8.90-07 | 9.32-07 | 9.31-07 | 7.42-07 | NGGS method II | Itr | 22 | 33 | 43 | 52 | 88 | Time | 0.1486 | 0.2537 | 0.9255 | 1.3671 | 1.7898 | RSV | 5.09-07 | 7.45-07 | 7.63-07 | 9.17-07 | 8.90-07 |
|
|