Research Article

A Feature-Driven Decision Support System for Heart Failure Prediction Based on Statistical Model and Gaussian Naive Bayes

Table 5

Details of other machine learning methods proposed for HF prediction and their obtained HF prediction accuracies.

Study (year)MethodAccuracy (%)

ToolDiag, RA [26]IB1-450.00
WEKA, RA [26]InductH58.50
ToolDiag, RA [26]RBF60.00
WEKA, RA [26]FOIL64.00
ToolDiag, RA [26]MLP + BP65.60
WEKA, RA [26]T268.10
WEKA, RA [26]1R71.40
WEKA, RA [26]IB1c74.00
WEKA, RA [26]K76.70
Robert Detrano [26]Logistic regression77.00
Cheung (2001) [27]C4.581.11
Cheung (2001) [27]Naive Bayes81.48
Cheung (2001) [27]BNND81.11
Cheung (2001) [27]BNNF80.96
WEKA, RA [26]Naive Bayes83.60
Ster and Dobnikar [28]Fisher discriminant analysis84.2
Ster and Dobnikar [28]Linear discriminant analysis84.5
Ster and Dobnikar [28]Naive Bayes82.5–83.4
Polat et al. (2005) [18]AIRS84.50
Ozsen et al. (2005) [29]Kernel functions with AIS85.93
Kahramanli and Allahverdi (2008) [30]Hybrid neural network system86.8
Polat et al. (2006) [1]Fuzzy-AIRS-Knn-based system87.00
Özşen and Güneş (2009) [19]Modified artificial immune system87.43
Das et al. (2009) [2]Neural network ensembles89.01
Jankowski and Kadirkamanathan (1997) [31]IncNet90.00
Kumar (2011) [32]ANFIS91.18
Samuel et al. (2017) [20]ANN-fuzzy-AHP91.10
Kumar (2012) [33]Fuzzy resolution mechanism91.83
Ali et al. (2019) [21]Stacked and optimized SVMs92.22
Paul et al. (2018) [23]Adaptive weighted fuzzy system ensemble92.31
Proposed method (2018)-GNB93.33