| Study (year) | Method | Accuracy (%) |
| ToolDiag, RA [26] | IB1-4 | 50.00 | WEKA, RA [26] | InductH | 58.50 | ToolDiag, RA [26] | RBF | 60.00 | WEKA, RA [26] | FOIL | 64.00 | ToolDiag, RA [26] | MLP + BP | 65.60 | WEKA, RA [26] | T2 | 68.10 | WEKA, RA [26] | 1R | 71.40 | WEKA, RA [26] | IB1c | 74.00 | WEKA, RA [26] | K | 76.70 | Robert Detrano [26] | Logistic regression | 77.00 | Cheung (2001) [27] | C4.5 | 81.11 | Cheung (2001) [27] | Naive Bayes | 81.48 | Cheung (2001) [27] | BNND | 81.11 | Cheung (2001) [27] | BNNF | 80.96 | WEKA, RA [26] | Naive Bayes | 83.60 | Ster and Dobnikar [28] | Fisher discriminant analysis | 84.2 | Ster and Dobnikar [28] | Linear discriminant analysis | 84.5 | Ster and Dobnikar [28] | Naive Bayes | 82.5–83.4 | Polat et al. (2005) [18] | AIRS | 84.50 | Ozsen et al. (2005) [29] | Kernel functions with AIS | 85.93 | Kahramanli and Allahverdi (2008) [30] | Hybrid neural network system | 86.8 | Polat et al. (2006) [1] | Fuzzy-AIRS-Knn-based system | 87.00 | Özşen and Güneş (2009) [19] | Modified artificial immune system | 87.43 | Das et al. (2009) [2] | Neural network ensembles | 89.01 | Jankowski and Kadirkamanathan (1997) [31] | IncNet | 90.00 | Kumar (2011) [32] | ANFIS | 91.18 | Samuel et al. (2017) [20] | ANN-fuzzy-AHP | 91.10 | Kumar (2012) [33] | Fuzzy resolution mechanism | 91.83 | Ali et al. (2019) [21] | Stacked and optimized SVMs | 92.22 | Paul et al. (2018) [23] | Adaptive weighted fuzzy system ensemble | 92.31 | Proposed method (2018) | -GNB | 93.33 |
|
|