Research Article

Integrative Deep Learning for Identifying Differentially Expressed (DE) Biomarkers

Table 1

Simulation results of metalogistic regression, meta-SVM, and the integrative deep learning (no inclusion of random study).

MethodsσSensitivity (s.e)Specificity (s.e)Youden J index

Meta-SVM0.11(0)0.9859(0.001)0.9859
0.31(0)0.1597(0.007)0.1597
0.50.9930(0.0006)0.1498(0.006)0.1491
0.70.9777(0.0003)0.5399(0.007)0.5100
0.90.9999(0)0.0135(0.001)0.0120

Metalogistic regression0.10.068(0.0017)1(0)0.0680
0.30.2000(0.006)1(0)0.2000
0.50.2937(0.0089)0.9814(0.0029)0.2715
0.70.3027(0.01)0.9484(0.005)0.2512
0.90.3006(0.012)0.9085(0.005)0.2092

Integrative deep learning0.10.7502(0.02)0.845312(0.02)0.5973
0.30.6625(0.026)0.7817(0.02)0.4427
0.50.7208(0.024)0.6911(0.024)0.4119
0.70.7042(0.026)0.6625(0.022)0.3666
0.90.7000(0.03)0.6427(0.029)0.3427