Research Article
Integrative Deep Learning for Identifying Differentially Expressed (DE) Biomarkers
Table 1
Simulation results of metalogistic regression, meta-SVM, and the integrative deep learning (no inclusion of random study).
| Methods | σ | Sensitivity (s.e) | Specificity (s.e) | Youden J index |
| Meta-SVM | 0.1 | 1 | (0) | 0.9859 | (0.001) | 0.9859 | 0.3 | 1 | (0) | 0.1597 | (0.007) | 0.1597 | 0.5 | 0.9930 | (0.0006) | 0.1498 | (0.006) | 0.1491 | 0.7 | 0.9777 | (0.0003) | 0.5399 | (0.007) | 0.5100 | 0.9 | 0.9999 | (0) | 0.0135 | (0.001) | 0.0120 |
| Metalogistic regression | 0.1 | 0.068 | (0.0017) | 1 | (0) | 0.0680 | 0.3 | 0.2000 | (0.006) | 1 | (0) | 0.2000 | 0.5 | 0.2937 | (0.0089) | 0.9814 | (0.0029) | 0.2715 | 0.7 | 0.3027 | (0.01) | 0.9484 | (0.005) | 0.2512 | 0.9 | 0.3006 | (0.012) | 0.9085 | (0.005) | 0.2092 |
| Integrative deep learning | 0.1 | 0.7502 | (0.02) | 0.845312 | (0.02) | 0.5973 | 0.3 | 0.6625 | (0.026) | 0.7817 | (0.02) | 0.4427 | 0.5 | 0.7208 | (0.024) | 0.6911 | (0.024) | 0.4119 | 0.7 | 0.7042 | (0.026) | 0.6625 | (0.022) | 0.3666 | 0.9 | 0.7000 | (0.03) | 0.6427 | (0.029) | 0.3427 |
|
|