Research Article

Integrative Deep Learning for Identifying Differentially Expressed (DE) Biomarkers

Table 2

Simulation results of metalogistic regression, meta-SVM, and the integrative deep learning (inclusion of 1 random study).

MethodsσSensitivity (s.e)Specificity (s.e)Youden J index

Meta-SVM0.10.8514(0.008)0.9531(0.003)0.8045
0.30.7804(0.009)0.8502(0.005)0.6345
0.50.8868(0.007)0.4567(0.008)0.3435
0.70.9930(0.002)0.0208(0.002)0.0138
0.90.8465(0.012)0.4899(0.013)0.3364

Metalogistic regression0.10.1347(0.007)0.9392(0.002)0.0739
0.30.2131(0.007)0.9548(0)0.1680
0.50.2638(0.01)0.9338(0.003)0.1977
0.70.2555(0.01)0.8965(0.004)0.1520
0.90.2652(0.01)0.8706(0.004)0.1359

Integrative deep learning0.10.7708(0.024)0.8345(0.02)0.6052
0.30.6812(0.026)0.7302(0.023)0.4114
0.50.6708(0.022)0.6989(0.022)0.3697
0.70.6979(0.027)0.6395(0.029)0.3375
0.90.7583(0.028)0.5828(0.028)0.3411