Research Article
Integrative Deep Learning for Identifying Differentially Expressed (DE) Biomarkers
Table 2
Simulation results of metalogistic regression, meta-SVM, and the integrative deep learning (inclusion of 1 random study).
| Methods | σ | Sensitivity (s.e) | Specificity (s.e) | Youden J index |
| Meta-SVM | 0.1 | 0.8514 | (0.008) | 0.9531 | (0.003) | 0.8045 | 0.3 | 0.7804 | (0.009) | 0.8502 | (0.005) | 0.6345 | 0.5 | 0.8868 | (0.007) | 0.4567 | (0.008) | 0.3435 | 0.7 | 0.9930 | (0.002) | 0.0208 | (0.002) | 0.0138 | 0.9 | 0.8465 | (0.012) | 0.4899 | (0.013) | 0.3364 |
| Metalogistic regression | 0.1 | 0.1347 | (0.007) | 0.9392 | (0.002) | 0.0739 | 0.3 | 0.2131 | (0.007) | 0.9548 | (0) | 0.1680 | 0.5 | 0.2638 | (0.01) | 0.9338 | (0.003) | 0.1977 | 0.7 | 0.2555 | (0.01) | 0.8965 | (0.004) | 0.1520 | 0.9 | 0.2652 | (0.01) | 0.8706 | (0.004) | 0.1359 |
| Integrative deep learning | 0.1 | 0.7708 | (0.024) | 0.8345 | (0.02) | 0.6052 | 0.3 | 0.6812 | (0.026) | 0.7302 | (0.023) | 0.4114 | 0.5 | 0.6708 | (0.022) | 0.6989 | (0.022) | 0.3697 | 0.7 | 0.6979 | (0.027) | 0.6395 | (0.029) | 0.3375 | 0.9 | 0.7583 | (0.028) | 0.5828 | (0.028) | 0.3411 |
|
|