Research Article

Integrative Deep Learning for Identifying Differentially Expressed (DE) Biomarkers

Table 3

Simulation results of metalogistic regression, meta-SVM, and the integrative deep learning (inclusion of 2 random studies).

MethodsσSensitivity (s.e)Specificity (s.e)Youden J index

Meta-SVM0.10.8284(0.008)0.9815(0.001)0.8099
0.30.9090(0.006)0.1453(0.005)0.0543
0.50.9990(0.001)0.0010(0.0003)0
0.70.8518(0.013)0.2736(0.012)0.1254
0.90.9944(0.0017)0.0056(0.001)0

Metalogistic regression0.10.1423(0.008)0.9062(0.003)0.0485
0.30.1861(0.01)0.9145(0.003)0.1006
0.50.2319(0.01)0.8678(0.004)0.0977
0.70.2527(0.01)0.8170(0.006)0.0697
0.90.2583(0.01)0.8359(0.005)0.0942

Integrative deep learning0.10.7666(0.018)0.9135(0.012)0.6802
0.30.7562(0.023)0.7338(0.02)0.4901
0.50.7208(0.022)0.6968(0.018)0.4177
0.70.7187(0.03)0.6192(0.029)0.3380
0.90.7770(0.02)0.5229(0.03)0.3000