Research Article

Wavelet Scattering Transform for ECG Beat Classification

Table 1

Selected automated ECG classification methods on the MIT-BIH Arrhythmia Database.

AuthorYearMethodClassPerformance

Conventional machine learning approaches
Inan et al. [35]2006Feature extraction: classifierWT and timing interval
Neural network
3ACC: 95.16%
Sayadi et al. [36]2010Feature extraction: classifierInnovation sequence of EKF
Bayesian filtering
2ACC: 99.10%
SEN: 98.77%
SPEC: 97.47%
Martis et al. [32]2012Feature extraction: classifierPCA
SVM with RBF kernel
5ACC: 98.11%
SEN: 99.90%
SPEC: 99.10%
Prasad et al. [37]2013Feature extraction: classifierHOS+ICA
KNN
3ACC: 97.65%
SEN: 98.75%
SPEC: 99.53%
Martis et al. [38]2013Feature extraction: classifierCumulant+ICA
KNN
3ACC: 99.5%
SEN: 100%
SPEC: 99.22%
Martis et al. [7]2013Feature extraction: classifierHOS+PCA
LS-SVM
3ACC: 93.48%
SEN: 99.27%
SPEC: 98.31%
Martis et al. [39]2013Feature extraction: classifierCumulant+PCA
LS-SVM
5ACC: 94.52%
SEN: 98.61%
SPEC: 98.41%
Martis et al. [32]2012Feature extraction: classifierDCT+PCA
SVM with RBF kernel
5ACC: 99.52%
SEN: 98.69%
SPEC: 99.91%
Martis et al. [40]2014Feature extraction: classifierICA+DCT
KNN
3ACC: 99.45%
SEN: 99.61%
SPEC: 100%
Kaya and Pehlivan [41]2015Feature extraction: classifierGenetic algorithms
KNN
5ACC: 99.69%
SEN: 99.46%
SPEC: 99.91%
Kaya and Pehlivan [8]2015Feature extraction: classifierTime series+PCA
KNN
5ACC: 99.63%
SEN: 99.29%
SPEC: 99.89%
Li and Zhou [33]2016Feature extraction: classifierWPE+RR
RF
5ACC: 94.61%
Mondjar-Guerra et al. [42]2018Feature extraction: classifierWavelets+LBP+HOS+several amplitude values
RF
5ACC: 94.5%
SEN: 66.4%
SPEC: 70.3%
Yang and Wei [6]2020Feature extraction: classifierCombined parameter and visual pattern features of ECG morphology
KNN
5ACC: 97.70%
This work2020Feature extraction: classifierWSN+the 4th time window
PNN
4ACC: 99.3%
SEN: 99.5%
SPEC: 98.8%

Deep learning approaches
Martis et al. [40]20149-layer deep convolution neural network5ACC: 93.47%
SEN: 96.01%
SPEC: 91.64%

ACC: accuracy; SEN: sensitivity; SPEC: specificity; WT: wavelet transform; EKF: extended Kalman filter; DCT: discrete cosine transform; DWT: discrete wavelet transform; HOS: higher order statistics; IC: independent component; ICA: independent component analysis; RR: RR intervals; WPE: wavelet packet entropy; LBP: local binary patterns; RF: random forest; LS-SVM: least square-support vector machine.