Research Article
Fast Enhanced Exemplar-Based Clustering for Incomplete EEG Signals
Algorithm 1
Fast enhanced exemplar-based clustering algorithm.
| | Input: Given incomplete data | | | Output: Valid exemplar set . | | (1) | Compression: Apply basic exemplar-based clustering algorithm to the complete data ; | | (2) | Get the potential exemplar set by equation (11) and construct the new similarity matrix ; | | (3) | Generate the expansion order on the potential exemplar list | | (4) | Let ; | | (5) | for do | | (6) | if then | | (7) | compute by equations (15) and (16); | | (8) | if then | | (9) | for , set ; | | (10) | end | | (11) | else | | (12) | compute by equations (17)–(19) | | (13) | if then | | (14) | for , set | | (15) | else | | (16) | for , set | | (17) | else | | (18) | if then | | (19) | Accept the new exemplar | | (20) | end | | (21) | end | | (22) | t = t + 1 | | (23) | end | | (24) | Until converge. |
|