Research Article

A Comparison among Different Machine Learning Pretest Approaches to Predict Stress-Induced Ischemia at PET/CT Myocardial Perfusion Imaging

Table 2

Values used for tuning of parameters for each ML technique.

ParameterParameter spaceChosen value

ADANumber of trees10, 25, 50, 100, 20025
Max tree depth5, 10, 20, 5010
Learning rate0.001, 0.005, 0.01, 0.05, 0.1, 0.50.01

AdaBoostNumber of trees10, 25, 50, 100, 20050
MethodAdaBoost.M1, real AdaBoostAdaBoost.M1

LogisticFamilyBinomialBinomial

Naïve BayesLaplace correction0, 0.5, 1.00
Distribution type (kernel)True, falseFalse
Bandwidth adjustment0.01, 0.05, 0.1, 0.5, 1.00.1

Random ForestNumber of randomly selected predictors3, 5, 10, 2010

RpartMinimum number of observations in a node10, 15, 3015
Minimum number of observations in any leaf node3, 5, 105
Max tree depth3, 5, 10, 2010
Complexity parameter of the tree0.0001, 0.001, 0.01, 0.10.001

SVMKernelLinear, radial, sigmoidSigmoid
Parameter needed for sigmoid0.05, 0.1, 0.25, 0.50.1
Cost0.5, 1, 2, 51

XGBoostNumber of trees25, 50, 100, 200100
Max tree depth5, 10, 2010
Learning rate0.001, 0.005, 0.01, 0.05, 0.1, 0.50.01
Subsamples0.5, 0.75, 11