| | Parameter | Parameter space | Chosen value |
| | ADA | Number of trees | 10, 25, 50, 100, 200 | 25 | | Max tree depth | 5, 10, 20, 50 | 10 | | Learning rate | 0.001, 0.005, 0.01, 0.05, 0.1, 0.5 | 0.01 |
| | AdaBoost | Number of trees | 10, 25, 50, 100, 200 | 50 | | Method | AdaBoost.M1, real AdaBoost | AdaBoost.M1 |
| | Logistic | Family | Binomial | Binomial |
| | Naïve Bayes | Laplace correction | 0, 0.5, 1.0 | 0 | | Distribution type (kernel) | True, false | False | | Bandwidth adjustment | 0.01, 0.05, 0.1, 0.5, 1.0 | 0.1 |
| | Random Forest | Number of randomly selected predictors | 3, 5, 10, 20 | 10 |
| | Rpart | Minimum number of observations in a node | 10, 15, 30 | 15 | | Minimum number of observations in any leaf node | 3, 5, 10 | 5 | | Max tree depth | 3, 5, 10, 20 | 10 | | Complexity parameter of the tree | 0.0001, 0.001, 0.01, 0.1 | 0.001 |
| | SVM | Kernel | Linear, radial, sigmoid | Sigmoid | | Parameter needed for sigmoid | 0.05, 0.1, 0.25, 0.5 | 0.1 | | Cost | 0.5, 1, 2, 5 | 1 |
| | XGBoost | Number of trees | 25, 50, 100, 200 | 100 | | Max tree depth | 5, 10, 20 | 10 | | Learning rate | 0.001, 0.005, 0.01, 0.05, 0.1, 0.5 | 0.01 | | Subsamples | 0.5, 0.75, 1 | 1 |
|
|