Research Article
A Comparison among Different Machine Learning Pretest Approaches to Predict Stress-Induced Ischemia at PET/CT Myocardial Perfusion Imaging
Table 3
Metrics obtained from the ML techniques, evaluated on training/test and validation approaches.
| | Training/test () | Validation () | Accuracy (%) | Sensitivity (%) | Specificity (%) | AUROC (%) | Accuracy (%) | Sensitivity (%) | Specificity (%) | AUROC (%) |
| ADA | 88 | 48 | 97 | 90 | 76 | 26 | 89 | 68 | AdaBoost | 89 | 67 | 95 | 95 | 71 | 23 | 87 | 66 | Logistic | 80 | 5 | 98 | 72 | 80 | 7 | 98 | 75 | Naïve Bayes | 77 | 23 | 91 | 70 | 80 | 27 | 92 | 73 | Random Forest | 89 | 51 | 98 | 93 | 75 | 21 | 89 | 65 | Rpart | 82 | 27 | 96 | 75 | 76 | 17 | 91 | 70 | SVM | 72 | 13 | 87 | 61 | 77 | 21 | 91 | 65 | XGBoost | 83 | 27 | 97 | 83 | 77 | 18 | 92 | 69 |
|
|