Comparing the Prognostic Value of Stress Myocardial Perfusion Imaging by Conventional and Cadmium-Zinc Telluride Single-Photon Emission Computed Tomography through a Machine Learning Approach
Table 3
Machine learning analysis and statistical comparison through chi square test for proportions on the original dataset.
Accuracy (%)
Error (%)
Recall (%)
Specificity (%)
Tree
C-SPECT
87.4
12.6
94.4
17.1
CZT-SPECT
89.0
11.0
97.1
7.32
value
0.471
0.057
0.177
KNN
C-SPECT
74.4
25.6
78.6
31.7
CZT-SPECT
80.8
19.2
87.4
14.6
value
0.021
0.001
0.067
SVM
C-SPECT
85.9
14.1
92.2
21.6
CZT-SPECT
86.5
13.5
92.6
21.6
value
0.773
0.597
1.000
NB
C-SPECT
83.4
16.6
89.1
26.8
CZT-SPECT
84.1
15.9
90.1
24.4
value
0.787
0.649
0.800
RF
C-SPECT
90.3
9.7
98.5
7.3
CZT-SPECT
90.1
9.9
99.0
0.0
value
0.591
0.525
0.078
Abbreviations: KNN: nearest neighbor; SVM: support vector machine; NB: Naïve Bayes; RF: random forests.