Research Article

SERR-U-Net: Squeeze-and-Excitation Residual and Recurrent Block-Based U-Net for Automatic Vessel Segmentation in Retinal Image

Table 1

Details of SERR-U-Net.

Block nameLayer (type)Output sizeParams

Input (inputlayer)(48, 48, 1)0
Encoder block (1)Conv2d_1 (Conv2D)(48, 48, 16)2320
B_N(Batch Normalization)(48, 48, 16)64
SE_block_1 (SE-ResNet)
Max_pooling2d (maxpooling2D)
Encoder block (2)Conv2d_2 (Conv2D)(24, 24, 32)9248
B_N(Batch Normalization)(24, 24, 32)128
SE_block_2 (SE-ResNet)
Max_pooling2d (maxpooling2D)
Encoder block (3)Conv2d_3 (Conv2D)(12, 12, 64)36928
B_N(Batch Normalization)(12, 12, 64)256
SE_block_3 (SE-ResNet)
Max_pooling2d (maxpooling2D)
Encoder block (4)Conv2d_4 (Conv2D)(6, 6, 128)147712
B_N(Batch Normalization)(6, 6, 128)512
SE_block_4 (SE-ResNet)
Encoder block (5)Conv2d_5 (Conv2D)(6, 6, 128)147712
B_N(Batch Normalization)(6, 6, 128)512
Up_sampling2d (upsampling2D)
Decoder block (6)Conv2d_6 (Conv2D)(12, 12, 64)36928
B_N(Batch Normalization)(12, 12, 64)256
Up_sampling2d (upsampling2D)
Decoder block (7)Conv2d_7 (Conv2D)(24, 24, 32)9248
B_N(Batch Normalization)(24, 24, 32)128
Up_sampling2d (upsampling2D)
Decoder block (8)Conv2d_8 (Conv2D)(48, 48, 16)2320
B_N(Batch Normalization)(48, 48, 16)64
Conv2d_9 (Conv2D)(48, 48, 1)0