Research Article
SERR-U-Net: Squeeze-and-Excitation Residual and Recurrent Block-Based U-Net for Automatic Vessel Segmentation in Retinal Image
Table 6
AUC results of our proposed method on the 20 DRIVE images.
| DRIVE | AUC | DRIVE | AUC | DRIVE | AUC | DRIVE | AUC |
| 21_test.tif | 0.9874 | 26_test.tif | 0.9651 | 31_test.tif | 0.977 | 36_test.tif | 0.9862 | 22_test.tif | 0.9824 | 27_test.tif | 0.9796 | 32_test.tif | 0.9618 | 37_test.tif | 0.9831 | 23_test.tif | 0.9624 | 28_test.tif | 0.9758 | 33_test.tif | 0.9772 | 38_test.tif | 0.9842 | 24_test.tif | 0.9756 | 29_test.tif | 0.9789 | 34_test.tif | 0.9824 | 39_test.tif | 0.9838 | 25_test.tif | 0.9768 | 30_test.tif | 0.9772 | 35_test.tif | 0.9780 | 40_test.tif | 0.9841 |
|
|