Research Article

Automatic Diagnosis of Mild Cognitive Impairment Based on Spectral, Functional Connectivity, and Nonlinear EEG-Based Features

Table 6

The intersection of the selected features in all iterations of 10-fold crossvalidation.

Feature setSelected features

Functional connectivityAll features
SpectralAll features
NonlinearDFA (Fp1, Fp2, F4, Fz, T4, T6, Pz, O1, O2)
Higuchi (Fp2, F8, T4, P4, Pz, O2, C4, Cz, O2)
Correlation dimension (Fp1, Fp2, F3, Fz, T3, T4, T6, P3, C3, C4, O1, O2)
Lyapunov exponent (F3, F4, Fz, T5, P4, O2, C3, C4, Cz, O1, O2)
C0-complexity (Fp1, F4, T3, P3, P4, Pz, C4, O1)
Kolmogorov entropy (Fp1, Fp2, F3, F8, T3, T5, T6, Pz, C4, O1, O2)
Shannon entropy (Fp1, Fp2, F3, Fz, T3, T6, T4, T5, O1, Cz)
Approximate entropy (Fp1, Fp2, F4, F3, Fz, F7, T6, P3, P4, O2, C3, Cz)