Research Article
A Novel Method for COVID-19 Detection Based on DCNNs and Hierarchical Structure
Table 3
Results using different classification models for COVID-19 detection.
| Method | Performance metrics | Sensitivity | Specificity | Precision | -score | Accuracy |
| DenseNet-121 [19] | 0.9159 | 0.9200 | 0.9227 | 0.9193 | 0.9200 | Chen et al. [30] | 0.9693 | 0.9700 | 0.9707 | 0.9701 | 0.9700 | VGG-16 [14] | 0.8724 | 0.8900 | 0.9133 | 0.8924 | 0.8900 | Xception [35] | 0.6800 | 0.6800 | 0.9273 | 0.7846 | 0.6800 | Apostolopoulos et al. [31] | 0.9487 | 0.9533 | 0.9604 | 0.9545 | 0.9533 | Gayathri et al. [22] | 0.9754 | 0.9402 | 0.9435 | 0.9596 | 0.9583 | Bargshady et al. [13] | 0.9001 | 0.8755 | 0.8877 | 0.8990 | 0.8769 | Irfan et al. [32] | 0.8824 | 0.9222 | 0.5945 | 0.7112 | 0.9220 | Almalki et al. [33] | 0.9628 | 0.9621 | 0.9628 | 0.9628 | 0.9625 | Nguyen et al. [34] | 0.9628 | 0.9633 | 0.9638 | 0.9633 | 0.9633 | DualCheXNet [23] | 0.8051 | 0.8100 | 0.9959 | 0.8904 | 0.8100 | The proposed method | 0.9900 | 1.0000 | 1.0000 | 0.9950 | 0.9967 |
|
|