Computational and Mathematical Methods in Medicine / 2022 / Article / Tab 2 / Research Article
A Novel Radiomics-Based Machine Learning Framework for Prediction of Acute Kidney Injury-Related Delirium in Patients Who Underwent Cardiovascular Surgery Table 2 Characteristics of patients with delirium and without delirium (
).Delirium group ( ) Nondelirium group ( ) Average sd Average sd value valueAge 62.364 11.054 62.097 11.214 0.543 0.283 Weight 64.927 9.093 64.758 9.845 0.784 0.682 Height 165.200 8.322 164.661 9.009 1.231 1.231 BMI 1.803 0.144 1.798 0.158 0.068 0.015 Hemoglobin 131.291 21.513 131.468 22.320 0.342 0.149 Hematocrit 25.182 3.087 24.710 3.400 0.743 0.614 Albumin 39.485 3.285 39.349 3.455 0.066 0.011 NGAL 130.778 67.210 130.911 66.236 0.593 0.361 TnI 0.348 0.836 0.479 1.606 0.055 0.005 FABP 1.580 2.959 1.721 3.103 0.784 0.716 NT-prBNP 376.628 501.617 408.349 568.687 0.124 0.038 LVEF 62.273 5.182 61.565 6.385 0.112 0.029 CVP 8.618 3.670 8.548 3.640 0.054 0.002 Type of surgery 2.164 1.290 2.129 1.263 0.342 0.164 CPB time 112.255 36.932 115.258 38.488 0.674 0.527 RBCI 0.487 1.527 0.529 1.524 0.634 0.413 Aortic occlusion time 73.155 28.342 76.218 29.587 0.894 0.855 Ultrafiltration volume 1820.982 1096.451 1858.935 1121.492 0.556 0.314 ICU length of stay 1.927 2.641 2.290 3.050 0.064 0.008 ICU mechanical ventilation time 12.825 13.227 14.974 17.253 0.321 0.126 Hospitalization time 17.576 8.069 18.237 7.965 0.667 0.493