Research Article

A Novel Radiomics-Based Machine Learning Framework for Prediction of Acute Kidney Injury-Related Delirium in Patients Who Underwent Cardiovascular Surgery

Table 2

Characteristics of patients with delirium and without delirium ().

Delirium group ()Nondelirium group ()
AveragesdAveragesd value value

Age62.36411.05462.09711.2140.5430.283
Weight64.9279.09364.7589.8450.7840.682
Height165.2008.322164.6619.0091.2311.231
BMI1.8030.1441.7980.1580.0680.015
Hemoglobin131.29121.513131.46822.3200.3420.149
Hematocrit25.1823.08724.7103.4000.7430.614
Albumin39.4853.28539.3493.4550.0660.011
NGAL130.77867.210130.91166.2360.5930.361
TnI0.3480.8360.4791.6060.0550.005
FABP1.5802.9591.7213.1030.7840.716
NT-prBNP376.628501.617408.349568.6870.1240.038
LVEF62.2735.18261.5656.3850.1120.029
CVP8.6183.6708.5483.6400.0540.002
Type of surgery2.1641.2902.1291.2630.3420.164
CPB time112.25536.932115.25838.4880.6740.527
RBCI0.4871.5270.5291.5240.6340.413
Aortic occlusion time73.15528.34276.21829.5870.8940.855
Ultrafiltration volume1820.9821096.4511858.9351121.4920.5560.314
ICU length of stay1.9272.6412.2903.0500.0640.008
ICU mechanical ventilation time12.82513.22714.97417.2530.3210.126
Hospitalization time17.5768.06918.2377.9650.6670.493