Journals
Publish with us
Publishing partnerships
About us
Blog
Computational and Mathematical Methods in Medicine
Journal overview
For authors
For reviewers
For editors
Table of Contents
Special Issues
Computational and Mathematical Methods in Medicine
/
2022
/
Article
/
Tab 5
/
Research Article
A Novel Radiomics-Based Machine Learning Framework for Prediction of Acute Kidney Injury-Related Delirium in Patients Who Underwent Cardiovascular Surgery
Table 5
AKI classification performance using clinical-based random forest (RF) model.
Signature
AUC
Precision
Recall
-
score
Accuracy
Delong test for AUC values
Training set
Fold-1
0.957
0.714
0.909
0.800
0.889
,
Fold-2
0.934
1.000
0.308
0.471
0.800
Fold-3
0.927
1.000
0.636
0.778
0.909
Fold-4
0.881
1.000
0.462
0.632
0.848
Fold-5
1.000
1.000
1.000
1.000
1.000
Average
0.940
0.943
0.663
0.736
0.889
Testing set
Fold-1
0.686
0.471
0.296
0.364
0.691
,
Fold-2
0.665
0.522
0.231
0.320
0.718
Fold-3
0.583
0.267
0.074
0.116
0.665
Fold-4
0.659
0.485
0.308
0.376
0.706
Fold-5
0.714
0.571
0.500
0.533
0.767
Average
0.661
0.463
0.282
0.342
0.709
Best model in validation set
AUC
Precision
Recall
-
score
Accuracy
Delong test for AUC values
0.817
0.620
0.677
0.647
0.788