Research Article

Development of a Novel Deep Learning-Based Prediction Model for the Prognosis of Operable Cervical Cancer

Table 1

Patient demographic and clinicopathological characteristics.

FeaturesCharacteristicsNo.%

Age (years)Mean43.0
SD13.0

RaceWhite1092778.3
Black141710.2
American Indian1080.8
Chinese13799.9
NA1210.8

Marital statusSingle320423.0
Married734052.6
Separated2411.7
Divorced163611.7
Widowed9016.5
NA6304.5

Primary siteEndocervix252018.0
Exocervix1097878.7
Overlapping lesion4543.3

StageIA596742.8
IB599943.0
IIA6624.7
IIB12438.9
NA810.6

Lymph node metastasisNo metastasis1117580.1
Regional lymph node12649.1
Aortic/distant lymph node2021.4
NA13119.4

Positive lymph node numbers01142781.9
111308.1
25303.8
31832.4
43341.3
3482.5

Resected lymph node numbersMean10.8
SD13.7

Tumor diameter (mm)Mean23.8
SD33.1

Depth of invasionInner 1/3414129.7
Middle 1/311007.9
Outer 1/3221015.8
NA650146.6

HistologySquamous997171.5
Adenocarcinoma250117.9
Other types148010.6

DifferentiationPoor347524.9
Moderate350525.1
Well141610.2
NA555639.8

SurgeryLocal excision246617.6
TH163211.7
8386.0
195314.0
707350.7

NA indicates not available.