Research Article
Finger Vein Verification on Different Datasets Based on Deep Learning with Triplet Loss
Table 4
The modified VGGNet16 configuration was used in the research.
| | Number of filter | Size of feature map | Size of kernel | Number of stride | Number of padding |
| Image input layer | | | | | | Conv1 | 64 | | | | | Conv2 | 64 | | | | | Maxpool1 | 1 | | | | | Conv3 | 128 | | | | | Conv4 | 128 | | | | | Maxpool2 | 1 | | | | | Conv5 | 256 | | | | | Conv6 | 256 | | | | | Conv7 | 256 | | | | | Maxpool3 | 1 | | | | | Conv8 | 512 | | | | | Conv9 | 512 | | | | | Conv10 | 512 | | | | | Maxpool4 | 1 | | | | | Conv11 | 512 | | | | | Conv12 | 512 | | | | | conv13 | 512 | | | | | Maxpool5 | 1 | | | | | Linear (25088, 512) | | 512 | | | |
|
|