Research Article

[Retracted] Implementing Critical Machine Learning (ML) Approaches for Generating Robust Discriminative Neuroimaging Representations Using Structural Equation Model (SEM)

Table 3

Correlation analysis.

Correlations
Accuracy in critical ML [independent variable]AgeGender (, )Experience in radiologyYears of training in radiologyTraining provided to the ML algorithms (in years)IQ

Pearson correlationAccuracy in critical ML [independent variable]1.000.792.219.812.646.078.569
Age.7921.000.358.895.826.073.576
Gender (, ).219.3581.000.200.364-.110.180
Experience in radiology.812.895.2001.000.667-.051.677
Years of training in radiology.646.826.364.6671.000-.012.323
Training provided to the ML algorithms (in years).078.073-.110-.051-.0121.000-.064
IQ.569.576.180.677.323-.0641.000

Sig. (1-tailed)Accuracy in critical ML (independent variable)..000.176.000.001.371.004
Age.000..061.000.000.380.004
Gender (, ).176.061..199.057.322.223
Experience in radiology.000.000.199..001.415.001
Years of training in radiology.001.000.057.001..481.082
Training provided to the ML algorithms (in years).371.380.322.415.481..395
IQ.004.004.223.001.082.395.