Research Article
A Broad Learning System to Predict the 28-Day Mortality of Patients Hospitalized with Community-Acquired Pneumonia: A Case-Control Study
Table 2
The predictive performance of the models for the 28-day mortality of CAP patients.
| Prediction models | Accuracy | Sensitivity | Specificity | PPV | NPV |
| Training set | | | | | | BLS-RF | 0.912 (0.891-0.932) | 0.970 (0.929-1.000) | 0.906 (0.884-0.928) | 0.512 (0.425-0.599) | 0.997 (0.992-1.000) | BLS-XGB | 0.959 (0.944-0.973) | 0.881 (0.803-0.958) | 0.967 (0.953-0.980) | 0.728 (0.632-0.825) | 0.988 (0.979-0.996) | DNN | 0.941 (0.924-0.958) | 0.926 (0.864-0.989) | 0.942 (0.924-0.960) | 0.624 (0.529-0.718) | 0.992 (0.985-0.999) | CNN | 0.930 (0.911-0.948) | 0.941 (0.885-0.997) | 0.929 (0.909-0.948) | 0.577 (0.485-0.668) | 0.993 (0.987-1.000) | Logistic | 0.789 (0.758-0.818) | 0.941 (0.885-0.997) | 0.774 (0.742-0.806) | 0.300 (0.239-0.362) | 0.992 (0.985-1.000) | RF | 0.791 (0.761-0.820) | 0.853 (0.769-0.937) | 0.784 (0.753-0.816) | 0.290 (0.227-0.353) | 0.981 (0.969-0.993) | Testing set | | | | | | BLS-RF | 0.872 (0.842-0.902) | 0.925 (0.853-0.996) | 0.865 (0.833-0.898) | 0.458 (0.364-0.552) | 0.989 (0.979-1.000) | BLS-XGB | 0.932 (0.909-0.954) | 0.717 (0.596-0.838) | 0.958 (0.939-0.977) | 0.679 (0.565-0.801) | 0.965 (0.948-0.982) | DNN | 0.903 (0.877-0.929) | 0.808 (0.701-0.915) | 0.914 (0.888-0.941) | 0.532 (0.422-0.642) | 0.975 (0.960-0.990) | CNN | 0.897 (0.890-0.924) | 0.769 (0.655-0.884) | 0.912 (0.885-0.939) | 0.513 (0.402-0.624) | 0.938 (0.910-0.966) | Logistic | 0.779 (0.739-0.815) | 0.885 (0.798-0.971) | 0.766 (0.726-0.806) | 0.313 (0.238-0.388) | 0.982 (0.968-0.996) | RF | 0.756 (0.718-0.794) | 0.615 (0.483-0.748) | 0.773 (0.734-0.813) | 0.246 (0.172-0.320) | 0.944 (0.919-0.968) |
|
|
CAP: community-acquired pneumonia; BLS: broad learning system; RF: random forest; XGB: eXtreme Gradient Boosting; DNN: deep neural network; CNN: convolutional neural network; PPV: positive predictive value; NPV: negative predictive value.
|