Research Article

A Broad Learning System to Predict the 28-Day Mortality of Patients Hospitalized with Community-Acquired Pneumonia: A Case-Control Study

Table 2

The predictive performance of the models for the 28-day mortality of CAP patients.

Prediction modelsAccuracySensitivitySpecificityPPVNPV

Training set
 BLS-RF0.912 (0.891-0.932)0.970 (0.929-1.000)0.906 (0.884-0.928)0.512 (0.425-0.599)0.997 (0.992-1.000)
 BLS-XGB0.959 (0.944-0.973)0.881 (0.803-0.958)0.967 (0.953-0.980)0.728 (0.632-0.825)0.988 (0.979-0.996)
 DNN0.941 (0.924-0.958)0.926 (0.864-0.989)0.942 (0.924-0.960)0.624 (0.529-0.718)0.992 (0.985-0.999)
 CNN0.930 (0.911-0.948)0.941 (0.885-0.997)0.929 (0.909-0.948)0.577 (0.485-0.668)0.993 (0.987-1.000)
 Logistic0.789 (0.758-0.818)0.941 (0.885-0.997)0.774 (0.742-0.806)0.300 (0.239-0.362)0.992 (0.985-1.000)
 RF0.791 (0.761-0.820)0.853 (0.769-0.937)0.784 (0.753-0.816)0.290 (0.227-0.353)0.981 (0.969-0.993)
Testing set
 BLS-RF0.872 (0.842-0.902)0.925 (0.853-0.996)0.865 (0.833-0.898)0.458 (0.364-0.552)0.989 (0.979-1.000)
 BLS-XGB0.932 (0.909-0.954)0.717 (0.596-0.838)0.958 (0.939-0.977)0.679 (0.565-0.801)0.965 (0.948-0.982)
 DNN0.903 (0.877-0.929)0.808 (0.701-0.915)0.914 (0.888-0.941)0.532 (0.422-0.642)0.975 (0.960-0.990)
 CNN0.897 (0.890-0.924)0.769 (0.655-0.884)0.912 (0.885-0.939)0.513 (0.402-0.624)0.938 (0.910-0.966)
 Logistic0.779 (0.739-0.815)0.885 (0.798-0.971)0.766 (0.726-0.806)0.313 (0.238-0.388)0.982 (0.968-0.996)
 RF0.756 (0.718-0.794)0.615 (0.483-0.748)0.773 (0.734-0.813)0.246 (0.172-0.320)0.944 (0.919-0.968)

CAP: community-acquired pneumonia; BLS: broad learning system; RF: random forest; XGB: eXtreme Gradient Boosting; DNN: deep neural network; CNN: convolutional neural network; PPV: positive predictive value; NPV: negative predictive value.