Research Article
Application of Clustering-Based Analysis in MRI Brain Tissue Segmentation
Table 1
Quantitative results of different algorithms.
| Images | Indexes | Clustering models | K-means | FCM | MEC | GMM | HC | Mean-shift |
| 1 | RI | 0.8899 | 0.8914 | 0.8898 | 0.8855 | 0.8569 | 0.8976 | NMI | 0.7131 | 0.715 | 0.7135 | 0.7059 | 0.6421 | 0.7289 | 2 | RI | 0.8889 | 0.8911 | 0.8878 | 0.8851 | 0.8834 | 0.8947 | NMI | 0.7107 | 0.7147 | 0.7091 | 0.7049 | 0.6944 | 0.691 | 3 | RI | 0.8915 | 0.894 | 0.8915 | 0.8873 | 0.878 | 0.9023 | NMI | 0.7163 | 0.7202 | 0.7162 | 0.7099 | 0.6993 | 0.7108 | 4 | RI | 0.896 | 0.898 | 0.896 | 0.8917 | 0.8783 | 0.9062 | NMI | 0.7262 | 0.7292 | 0.7262 | 0.7188 | 0.6792 | 0.7228 | 5 | RI | 0.8983 | 0.9007 | 0.8984 | 0.896 | 0.9003 | 0.9143 | NMI | 0.731 | 0.7355 | 0.731 | 0.7283 | 0.7133 | 0.7373 | 6 | RI | 0.9012 | 0.9026 | 0.9012 | 0.8971 | 0.896 | 0.9039 | NMI | 0.7371 | 0.7399 | 0.7371 | 0.7307 | 0.7184 | 0.7412 | 7 | RI | 0.9005 | 0.9017 | 0.9005 | 0.8951 | 0.8992 | 0.9071 | NMI | 0.732 | 0.7339 | 0.732 | 0.7238 | 0.7062 | 0.7446 | 8 | RI | 0.902 | 0.9031 | 0.902 | 0.895 | 0.8923 | 0.9148 | NMI | 0.7362 | 0.7375 | 0.7362 | 0.7234 | 0.7125 | 0.7061 | 9 | RI | 0.9028 | 0.9052 | 0.9028 | 0.8964 | 0.901 | 0.9137 | NMI | 0.7391 | 0.7423 | 0.7391 | 0.7291 | 0.7342 | 0.7369 | 10 | RI | 0.9039 | 0.9053 | 0.9039 | 0.8959 | 0.8931 | 0.912 | NMI | 0.7418 | 0.7439 | 0.7418 | 0.7288 | 0.7245 | 0.7569 | Average | RI-mean | 0.8975 | 0.89931 | 0.89739 | 0.89251 | 0.88785 | 0.90666 | RI-std | 0.005316 | 0.005131 | 0.005516 | 0.004524 | 0.0131775 | 0.00674436 | NMI-mean | 0.72835 | 0.73121 | 0.72822 | 0.72036 | 0.70241 | 0.72765 | NMI-std | 0.010719 | 0.010418 | 0.010946 | 0.009479 | 0.024977688 | 0.01903099 |
|
|