Research Article

Investigation of Applying Machine Learning and Hyperparameter Tuned Deep Learning Approaches for Arrhythmia Detection in ECG Images

Table 4

CNN-Hyper-tuned model summary.

Layer (type)Output shapeNumber of parameters

Conv2d_4 (Conv2D)(None, 62, 62, 16)448
Conv2d_5 (Conv2D)(None, 60, 60, 16)2320
Max_pooling2d_2 (MaxPooling 2D)(None, 15, 15, 16)0
Dropout (dropout)(None, 15, 15, 16)0
Conv2d_6 (Conv2D)(None, 13, 13, 32)4640
Conv2d_7 (Conv2D)(None, 11, 11, 64)18496
Max_pooling2d_3 (MaxPooling 2D)(None, 5, 5, 64)0
Dropout (dropout)(None, 5, 5, 64)0
Flatten_1 (flatten)(None, 1600)0
Dense_3 (dense)(None, 128)204928
Dropout_2 (dropout)(None, 128)0
Dense_3 (dense)(None, 6)774
Total params: 231,606Trainable params: 231,606Nontrainable params: 0