degree_function <- function(network, alpha1=0.0, alpha2=1.0, step_size=0.5, header="deg_") |
library(tnet) |
num_iter <- /step_size |
a_vals <- C(alpha1) |
for ( in 1:num_iter) |
a_vals <- a_vals[i] + step_size |
|
result <- degree_(network, measure=C("alpha"), alpha=a_vals[]) |
for ( in 2:length(a_vals)) |
result <- merge(result, degree_(network, measure=C("alpha"), alpha=a_vals[i]), by="node") |
names(result)<- C(paste(header, a_vals[i], sep="")) |
|
names(result)[C()] <- C(paste(header, a_vals[], sep="")) |
return(result) |
|
closeness_function <- function(network, alpha1=0.0, alpha2=1.0, step_size=0.5, header="clo_") |
library(tnet) |
num_iter <- /step_size |
a_vals <- C(alpha1) |
for (i in 1:num_iter) |
a_vals <- a_vals[i] + step_size |
|
result <- closeness_(network, alpha=a_vals[]) |
for (i in 2:length(a_vals)) |
result <- merge(result, closeness_(network, alpha=a_vals[i]), by="node") |
names(result <- C(paste(header, a_vals[i], sep=""), paste("n.", header, a_vals[i], sep="")) |
|
names(result) <- C(paste(header, a_vals[], sep=""), paste("n.", header, a_vals[], sep="")) |
return(result) |
|
closeness_function2 <- function(network, alpha1=0.0, alpha2=1.0, step_size=0.5, header="clo_") |
library(tnet) |
num_iter <- /step_size |
a_vals <- C(alpha1) |
for (i in 1:num_iter) |
a_vals <- a_vals[i] + step_size |
|
result <- closeness_(network, alpha=a_vals[]) |
result <- result[,1:ncol(result)-1] |
for (i in 2:length(a_vals)) |
result <- merge(result, closeness_(network, alpha=a_vals[i]), by="node") |
result <- result[,1:ncol(result)-1] |
names(result) <- C(paste(header, a_vals[i], sep="")) |
#names(result)<- C(paste(header, a_vals[i], sep=""), paste("n.", header, a_vals[i], sep="")) |
|
names(result)[C()] <- C(paste(header, a_vals[], sep="")) |
retur (result) |
|
betweenness_function <- function(network, alpha1=0.0, alpha2=1.0, step_size=0.5, header="bet_") |
library(tnet) |
num_iter <- /step_size |
a_vals <- C(alpha1) |
for (i in 1:num_iter) |
a_vals <- a_vals[i] + step_size |
|
result <- betweenness_(network, alpha=a_vals[i]) |
for (i in 2:length (a_vals)) |
result <- merge(result, betweenness_(network, alpha=a_vals[i]), by="node") |
names(result)<-C(paste(header, a_vals[i], sep="")) |
|
names(result)[C()]<- C(paste(header, a_vals[], sep="")) |
return(result) |
|
# sorts dataset by nth column |
order_by_nth_col <- function(dataframe=NULL, , top_rows=10, ascending=TRUE) |
if (ascending) |
return(dataframe[with(dataframe, order(dataframe[[n]])),][1:top_rows,]) |
|
else |
return(dataframe[with(dataframe, order(-dataframe[[n]])),][1:top_rows,]) |
|
|
degree_comparison <- function(tnet1, tnet2, alpha1=0.0, alpha2=1.0, step_size=0.5, ) |
res1 <- degree_function(tnet1, alpha1, alpha2, step_size) |
res2 <- degree_function(tnet2, alpha1, alpha2, step_size) |
num_comparisons <- /step_size + 1 |
result <- C() |
for (i in 1:num_comparisons) |
tmp1 <- order_by_nth_col(res1, , top_rows=r, F) |
tmp2 <- order_by_nth_col(res2, , top_rows=r, F) |
#print(tmp1[]) |
#print(tmp2[]) |
result <- alpha1 + step_size |
#result <- r − length(intersect(tmp1[,1 : 1], tmp2[,1 : 1])) # non-matching records |
result <- sum(tmp1[,1 : 1]!=tmp2[,1 : 1]) |
#result[i] <- r − length(intersect(tmp1[,1 : 1], tmp2[,1 : 1])) # non-matching records |
|
r <- matrix(result, nrow=2, dimnames=list(C("alpha", "Hamming distance"), C())) |
return(r) |
|
betweenness_comparison <- function(tnet1, tnet2, alpha1=0.0, alpha2=1.0, step_size=0.5, ) |
res1<- betweenness_function(tnet1, alpha1, alpha2, step_size) |
res2<- betweenness_function(tnet2, alpha1, alpha2, step_size) |
num_comparisons <- /step_size + 1 |
result <- C() |
for (i in 1:num_comparisons) |
tmp1 <- order_by_nth_col(res1, , top_rows=r, F) |
tmp2 <- order_by_nth_col(res2, , top_rows=r, F) |
result <- alpha1 + () step_size |
result <- sum(tmp1[,1 : 1] != tmp2[,1 : 1]) |
|
res <- matrix(result, nrow=2, dimnames=list(C("alpha", "Hamming distance"), C())) |
return(res) |
|
sort_all <- function(dataframe=NULL) |
rows <- nrow(dataframe) |
cols <- ncol(dataframe) |
result <- data.frame( 1:62) |
for (i in 1:cols) |
result <- cbind(result[,1:i], order_by_nth_col(dataframe, i, rows, F)[,1]) |
|
#result <- result[,3:cols+1] |
return(result[,3 : 9]) |
|
spearman_corr <- function(df1, df2) |
library(Hmisc) |
x <- sort_all(df1) |
y <- sort_all(df2) |
cols <- ncol(x) |
for (i in 1:cols) |
print(names(df1)) |
print("∖") |
print(rcorr(x[,i], y[,i])) |
print("–∖") |
|
return() |
|
# Returns a random sample extracted from the specified network in the tnet format. |
get_edge_sample <- function(network, , weighted=TRUE, weight_threshold=0) |
result <- network[sample(nrow(network), size=n),] |
return(result) |
|