Research Article
A New Robust Classifier on Noise Domains: Bagging of Credal C4.5 Trees
Table 11
values of the Nemenyi test about the accuracy on data sets with
of added noise.
| | ā | Algorithms | |
| | 21 | BA-C4.5-U versus BA-C4.5 | 0.000034 | | 20 | BA-C4.5-U versus BA-CC4.5 | 0.001194 | | 19 | BA-CDT-U versus BA-C4.5 | 0.002081 |
| | 18 | BA-C4.5-U versus BA-CC4.5-U | 0.00305 | | 17 | BA-C4.5 versus BA-CDT | 0.006311 | | 16 | BA-C4.5 versus RF | 0.006769 | | 15 | BA-CDT-U versus BA-CC4.5 | 0.029579 | | 14 | BA-CDT-U versus BA-CC4.5-U | 0.057705 | | 13 | BA-CDT versus BA-CC4.5 | 0.067475 | | 12 | BA-CC4.5 versus RF | 0.07102 | | 11 | BA-CC4.5-U versus BA-CDT | 0.120962 | | 10 | BA-CC4.5-U versus RF | 0.126611 | | 9 | BA-C4.5-U versus RF | 0.151281 | | 8 | BA-C4.5-U versus BA-CDT | 0.157987 | | 7 | BA-CC4.5-U versus BA-C4.5 | 0.237833 | | 6 | BA-C4.5-U versus BA-CDT-U | 0.287015 | | 5 | BA-C4.5 versus BA-CC4.5 | 0.366699 | | 4 | BA-CDT-U versus RF | 0.711138 | | 3 | BA-CDT-U versus BA-CDT | 0.728454 | | 2 | BA-CC4.5-U versus BA-CC4.5 | 0.781207 | | 1 | BA-CDT versus RF | 0.981534 |
|
|