Research Article
Collision-Free Path-Planning for Six-DOF Serial Harvesting Robot Based on Energy Optimal and Artificial Potential Field
Table 2
Statistical results of the virtual tests for grape harvesting path-planning.
| Number of objectives | Harvesting optimal sequence | Length of path (L/cm) | Number of sampling points (K) | Collision (Y/N) | Average time of planning (ms) |
| 3 | ②→③→① | 635.78 | 108 | N | 152 | 2 | ②→① | 448.67 | 72 | N | 108 | 4 | ③→④→①→② | 985.23 | 172 | N | 215 | 5 | ②→④→③→①→⑤ | 1362.45 | 206 | N | 261 | 3 | ①→③→② | 723.33 | 102 | N | 163 | 4 | ②→③→④→① | 1061.58 | 170 | N | 203 | 5 | ⑤→③→①→②→④ | 1472.65 | 216 | Y | 274 | 2 | ①→② | 463.65 | 91 | N | 98 | 3 | ②→③→① | 756.87 | 127 | N | 151 | 4 | ③→②→④→① | 1045.26 | 162 | N | 199 |
|
|