Research Article

MOFSRank: A Multiobjective Evolutionary Algorithm for Feature Selection in Learning to Rank

Table 3

The Comparison Results between MOFSRank and Feature Selection Baselines for Ranking on LETOR Data Sets, Averaged on Five Folds.

ā€‰N@1N@2N@3N@4N@5N@6N@7N@8N@9N@10MAP

NP2004

FenchelRank0.56000.74000.7636 0.7728 0.7808 0.79620.8010.80540.80960.8157 0.6830

FSMRank0.54670.78000.77840.79430.80000.80710.8190 0.8279 0.8279 0.82790.6837

0.58670.75330.76860.77110.78480.78990.78990.80550.80970.81370.6963

MOFSRank0.55470.80000.82180.84110.84660.85050.85140.85180.85430.85430.7064

HP2004

FenchelRank0.66670.76670.79610.80950.81810.8232 0.8232 0.8232 0.8274 0.82740.7447

FSMRank0.6133 0.79330.8070 0.8187 0.8187 0.8255 0.8302 0.8383 0.83830.8383 0.7205

0.6267 0.7867 0.8035 0.8135 0.8135 0.8135 0.8182 0.8182 0.82240.8265 0.7242

MOFSRank0.67200.80800.83430.84060.84770.85080.85410.85850.85940.86220.7614

TD2004

FenchelRank0.3600 0.3933 0.3725 0.36060.34620.33630.33290.3263 0.3220 0.32020.2368

FSMRank0.3600 0.3400 0.3384 0.32600.3151 0.3080 0.30920.31280.3138 0.31330.2267

0.3733 0.39330.36300.34620.3324 0.3279 0.32620.3261 0.3213 0.3205 0.2314

MOFSRank0.45330.44670.41050.39010.37950.37110.36160.35790.35510.35600.2427

MQ2008

FenchelRank0.3762 0.4164 0.4402 0.4598 0.4790 0.4933 0.4989 0.4619 0.2277 0.23170.4785

FSMRank0.3750 0.4211 0.44040.46110.48090.4938 0.4986 0.46240.2283 0.2321 0.4760

0.3720 0.4167 0.43900.4614 0.4805 0.4934 0.4995 0.4625 0.2268 0.2307 0.4800

MOFSRank0.39570.43000.45210.47180.48880.50210.50640.47000.23600.24060.4867

OHSUMED

FenchelRank0.54560.53900.51660.49890.48260.47420.47210.46800.4652 0.46370.4486

FSMRank0.5397 0.51240.5070 0.4938 0.4808 0.47250.46920.46370.4567 0.45340.4455

0.54890.5337 0.5032 0.4812 0.4765 0.4688 0.4631 0.45910.4594 0.4610 0.4477

MOFSRank0.57070.53530.5144 0.49700.48720.47740.47190.46760.46460.46410.4489