Research Article

Optimization of R245fa Flow Boiling Heat Transfer Prediction inside Horizontal Smooth Tubes Based on the GRNN Neural Network

Table 4

Part of the experimental data.

Sequence numberMass flux rate (kg m−2 s−1)Heat flux (W m−2)Quality of vapor-liquid mixture (%)Evaporation temperature (K)Optical tube inner diameter (mm)

1294.9532.320.3722313.154473.3
2393.2601.760.4996313.155056.8
3491.5601.760.4066313.155421.2
4589.8578.610.1981313.155786.1
5688.1509.180.0541313.154546.2
6688.1740.620.5957313.156223.7
7786.3694.330.392313.156943.3
8196.6416.600.712323.153893.5
9294.9439.740.7061323.154071.7
10393.2462.890.5429323.154628.9
11491.5439.740.3026323.154997.1
12589.8416.600.1483323.155080.5
13688.1370.310.0407323.154069.4
14688.1555.470.4425323.155673.2
15786.3509.180.2938323.156445.3
16196.6254.590.4526333.153264
17294.9254.590.1785333.153536
18393.2231.440.0462333.153127.6
19393.2300.880.4157333.154011.7
20491.5300.880.2920333.154490.7
21589.8277.730.1660333.154408.5
22688.1254.590.0820333.154243.2
23786.3231.440.0231333.153454.4
24786.3347.170.2563333.155586.6