Research Article
Vehicle Attribute Recognition for Normal Targets and Small Targets Based on Multitask Cascaded Network
Table 5
The attribute recognition results for the normal targets on the SYIT-Vehicle dataset.
| Method | Bus (%) | Microbus (%) | Minivan (%) | Sedan (%) | SUV (%) | Truck (%) | Total (%) |
| CNN | 80.00 | 68.65 | 75.14 | 63.25 | 64.33 | 68.65 | 70.00 | Fast R-CNN | 78.92 | 70.81 | 73.51 | 68.33 | 70.27 | 76.22 | 72.97 | Faster R-CNN | 87.03 | 76.76 | 78.92 | 69.73 | 81.62 | 77.30 | 79.82 | CNN + CNN | 88.94 | 79.31 | 80.14 | 75.23 | 83.20 | 79.41 | 81.89 | IFR-CNN + CNN | 92.49 | 84.23 | 83.74 | 82.23 | 84.02 | 81.41 | 84.96 | MC-CNN | 91.35 | 83.70 | 83.70 | 80.92 | 84.78 | 81.00 | 84.24 | MC-CNN-P | 94.05 | 84.67 | 83.62 | 83.16 | 84.78 | 80.46 | 85.12 | MC-CNN-F | 94.60 | 84.62 | 84.24 | 84.08 | 87.57 | 83.62 | 86.46 | MC-CNN-NT | 97.30 | 91.11 | 90.57 | 88.41 | 90.73 | 89.49 | 91.27 |
|
|