Research Article

Weakly Supervised Deep Semantic Segmentation Using CNN and ELM with Semantic Candidate Regions

Algorithm 2

ELM classification algorithm.
Input: Given training samples , ; The number of semantic label categories ;
Activation function ; The number of hidden layer nodes is l , Test sample .
Output: Predicted result .
Step 1. Initialize the weight and bias between the input layer and the hidden layer, Randomly set
the value of and , given the value of .
Step 2. Select the activation function of the hidden layer and calculating the output matrix .
Step 3. Calculate the output weight of the network : (where is the transpose of ).
Step 4. The output weights of the test samples : .
Step 5. the output of the predicted result : .