Research Article
Multichannel Deep Attention Neural Networks for the Classification of Autism Spectrum Disorder Using Neuroimaging and Personal Characteristic Data
Table 3
Leave-one-site-out cross validation results using multichannel DANN.
| Site-out | Size | Accuracy | Sensitivity | Precision | F-score | Specificity |
| TRINITY | 46 | 0.696 ± 0.012 | 0.640 ± 0.012 | 0.762 ± 0.036 | 0.696 ± 0.004 | 0.679 ± 0.070 | YALE | 56 | 0.696 ± 0.025 | 0.679 ± 0.029 | 0.714 ± 0.032 | 0.691 ± 0.034 | 0.682 ± 0.065 | STANFORD | 39 | 0.615 ± 0.018 | 0.350 ± 0.025 | 0.778 ± 0.039 | 0.483 ± 0.015 | 0.685 ± 0.032 | SDSU | 36 | 0.694 ± 0.024 | 0.727 ± 0.095 | 0.762 ± 0.072 | 0.744 ± 0.059 | 0.705 ± 0.067 | CALTECH | 36 | 0.667 ± 0.029 | 0.556 ± 0.016 | 0.714 ± 0.029 | 0.625 ± 0.015 | 0.693 ± 0.038 | UCLA | 98 | 0.755 ± 0.015 | 0.795 ± 0.017 | 0.700 ± 0.009 | 0.745 ± 0.012 | 0.701 ± 0.019 | CMU | 27 | 0.630 ± 0.019 | 0.692 ± 0.044 | 0.600 ± 0.037 | 0.643 ± 0.044 | 0.684 ± 0.035 | USM | 71 | 0.803 ± 0.015 | 0.560 ± 0.028 | 0.824 ± 0.034 | 0.667 ± 0.029 | 0.685 ± 0.038 | NYU | 175 | 0.709 ± 0.019 | 0.720 ± 0.026 | 0.758 ± 0.027 | 0.738 ± 0.039 | 0.689 ± 0.022 | PITT | 56 | 0.696 ± 0.022 | 0.778 ± 0.023 | 0.656 ± 0.002 | 0.712 ± 0.027 | 0.717 ± 0.013 | LEUVEN | 29 | 0.621 ± 0.017 | 1.000 ± 0.017 | 0.577 ± 0.027 | 0.732 ± 0.028 | 0.674 ± 0.022 | UM | 126 | 0.684 ± 0.026 | 0.761 ± 0.008 | 0.675 ± 0.009 | 0.715 ± 0.008 | 0.671 ± 0.012 | Mean | 62 | 0.713 ± 0.022 | 0.712 ± 0.081 | 0.731 ± 0.087 | 0.707 ± 0.043 | 0.713 ± 0.057 |
|
|
All data are mean and standard deviation.
|