Research Article
Clustering Input Signals Based Identification Algorithms for Two-Input Single-Output Models with Autoregressive Moving Average Noises
Table 3
The parameter estimates and their errors with clustering inputs based recursive least squares algorithm
.
| | | | | | | | | |
| 100 | −1.95143 | 0.95564 | 0.02088 | 0.00902 | −0.00756 | −0.01860 | 0.85720 | 4.09050 | 150 | −1.93967 | 0.94270 | 0.00767 | 0.00885 | 0.00027 | −0.01209 | 0.85790 | 3.63789 | 200 | −1.93795 | 0.94031 | 0.00674 | 0.00148 | −0.00322 | 0.00090 | 0.88401 | 4.54653 | 500 | −1.93131 | 0.93401 | 0.01091 | −0.00665 | 0.00016 | 0.00787 | 0.77077 | 1.31455 | 1000 | −1.92317 | 0.92560 | 0.00940 | −0.00678 | 0.00352 | 0.00169 | 0.79810 | 0.74356 | 2000 | −1.92398 | 0.92599 | 0.01380 | −0.01034 | 0.00362 | −0.00244 | 0.79445 | 0.67360 | 3000 | −1.92460 | 0.92681 | 0.01361 | −0.01012 | 0.00163 | −0.00070 | 0.79356 | 0.66986 | True values | −1.91500 | 0.91740 | 0.01118 | −0.01059 | 0.00021 | 0.00020 | 0.78720 | |
|
|