Research Article
Clustering Input Signals Based Identification Algorithms for Two-Input Single-Output Models with Autoregressive Moving Average Noises
Table 5
The parameter estimates and their errors with clustering inputs based recursive least squares algorithm
.
| | | | | | | | | |
| 100 | −1.95228 | 0.95651 | 0.04939 | 0.06757 | −0.03077 | −0.07524 | 0.85825 | 6.57724 | 150 | −1.94032 | 0.94335 | −0.00357 | 0.06691 | 0.00048 | −0.04913 | 0.85867 | 5.42231 | 200 | −1.93854 | 0.94091 | −0.00706 | 0.03772 | −0.01351 | 0.00282 | 0.88457 | 5.12093 | 500 | −1.93184 | 0.93455 | 0.00972 | 0.00515 | 0.00004 | 0.03079 | 0.77074 | 1.99164 | 1000 | −1.92349 | 0.92592 | 0.00389 | 0.00459 | 0.01344 | 0.00614 | 0.79809 | 1.21529 | 2000 | −1.92412 | 0.92613 | 0.02165 | −0.00941 | 0.01386 | −0.01036 | 0.79444 | 1.10021 | 3000 | −1.92474 | 0.92695 | 0.02079 | −0.00858 | 0.00593 | −0.00340 | 0.79351 | 0.84690 | True values | −1.91500 | 0.91740 | 0.01118 | −0.01059 | 0.00021 | 0.00020 | 0.78720 | |
|
|