Research Article
A Robust k-Means Clustering Algorithm Based on Observation Point Mechanism
Table 1
Comparison between k-means clustering algorithm and our proposed clustering algorithm.
| Data sets | N | t (%) | k | d | | | | | | |
| Synthetic #1 | 84 | 2.3 | 2 | 2 | 75 | 27 | 0.084 | 0.954 | 0.020 | 0.000 | Synthetic #2 | 236 | 4.2 | 7 | 2 | 80 | 107 | 0.791 | 0.860 | 0.063 | 0.016 | Synthetic #3 | 2557 | 2.2 | 5 | 3 | 92 | 761 | 0.774 | 0.972 | 0.047 | 0.031 | Synthetic #4 | 3670 | 1.9 | 6 | 4 | 96 | 656 | 0.815 | 0.977 | 0.188 | 0.063 | Synthetic #5 | 3655 | 1.5 | 6 | 5 | 96 | 573 | 0.816 | 0.982 | 0.313 | 0.078 | Synthetic #6 | 2830 | 1.1 | 7 | 6 | 95 | 296 | 0.848 | 0.988 | 0.250 | 0.063 | Iris | 150 | 0 | 3 | 4 | 80 | 27 | 0.730 | 0.730 | 0.031 | 0.016 | Iris | 152 | 1.3 | 3 | 4 | 82 | 26 | 0.531 | 0.743 | 0.031 | 0.016 | Seeds | 210 | 0 | 3 | 7 | 80 | 37 | 0.717 | 0.728 | 0.047 | 0.016 | Seeds | 212 | 0.9 | 3 | 7 | 80 | 37 | 0.462 | 0.694 | 0.047 | 0.016 | Wine | 178 | 0 | 3 | 13 | 81 | 6 | 0.870 | 0.850 | 0.031 | 0.016 | Wine | 180 | 1.1 | 3 | 13 | 81 | 10 | 0.365 | 0.882 | 0.031 | 0.016 |
|
|
The real data set which includes two synthetic outliers as shown in our BaiduPan. |